

29

C H A P T E R

3

Java Card Technology
Overview

Java Card technology enables programs written in the Java programming language
to run on smart cards and other resource-constrained devices. This chapter gives an
overview of Java Card technology—the system architecture and its components.

3.1 Architecture Overview

Smart cards represent one of the smallest computing platforms in use today. The
memory configuration of a smart card might have on the order of 1K of RAM, 16K
of EEPROM, and 24K of ROM. The greatest challenge of Java Card technology
design is to fit Java system software in a smart card while conserving enough space
for applications. The solution is to support only a subset of the features of the Java
language and to apply a split model to implement the Java virtual machine.

The Java Card virtual machine is split into two part: one that runs off-card and
the other that runs on-card. Many processing tasks that are not constrained to exe-
cute at runtime, such as class loading, bytecode verification, resolution and link-
ing, and optimization, are dedicated to the virtual machine that is running off-card
where resources are usually not a concern.

Smart cards differ from desktop computers in several ways. In addition to pro-
viding Java language support, Java Card technology defines a runtime environ-
ment that supports the smart card memory, communication, security, and
application execution model. The Java Card runtime environment conforms to the
smart card international standard ISO 7816.

chapter 3.fm Page 29 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW

30

The most significant feature of the Java Card runtime environment is that it
provides a clear separation between the smart card system and the applications.
The runtime environment encapsulates the underlying complexity and details of
the smart card system. Applications request system services and resources
through a well-defined high-level programming interface.

Therefore, Java Card technology essentially defines a platform on which appli-
cations written in the Java programming language can run in smart cards and other
memory-constrained devices. (Applications written for the Java Card platform are
referred to as

applets

.) Because of the split virtual machine architecture, this plat-
form is distributed between the smart card and desktop environment in both space
and time. It consists of three parts, each defined in a specification.

• The Java Card 2.1 Virtual Machine (JCVM) Specification defines a subset of
the Java programming language and virtual machine definition suitable for
smart card applications.

• The Java Card 2.1 Runtime Environment (JCRE) Specification precisely de-
scribes Java Card runtime behavior, including memory management, applet
management, and other runtime features.

• The Java Card 2.1 Application Programming Interface (API) Specification de-
scribes the set of core and extension Java packages and classes for program-
ming smart card applications.

3.2 Java Card Language Subset

Because of its small memory footprint, the Java Card platform supports only a care-
fully chosen, customized subset of the features of the Java language. This subset
includes features that are well suited for writing programs for smart cards and other
small devices while preserving the object-oriented capabilities of the Java program-
ming language. Table 3.1 highlights some notable supported and unsupported Java
language features.

It's no surprise that keywords of the unsupported features are also omitted
from the language. Many advanced Java smart cards provide a garbage collection
mechanism to enable object deletion.

Appendix A provides a comprehensive annotation of the Java Card language
subset. For Java Card applets that require storing and manipulating big numbers,
Chapter 14 provides programming tips for dealing with larger numbers without
using large primitive data types.

chapter 3.fm Page 30 Monday, May 8, 2000 12:44 PM

 JAVA CARD VIRTUAL MACHINE

31

3.3 Java Card Virtual Machine

A primary difference between the Java Card virtual machine (JCVM) and the Java
virtual machine (JVM) is that the JCVM is implemented as two separate pieces, as
depicted in Figure 3.1. The on-card portion of the Java Card virtual machine
includes the Java Card bytecode

interpreter

. The Java Card

converter

 runs on a PC
or a workstation. The converter is the off-card piece of the virtual machine. Taken

Table 3.1 Supported and unsupported Java features

Supported Java Features Unsupported Java Features

• Small primitive data types: boolean,
byte, short

• One-dimensional arrays

• Java packages, classes, interfaces, and
exceptions

• Java object-oriented features: inherit-
ance, virtual methods, overloading and
dynamic object creation, access scope,
and binding rules

• The int keyword and 32-bit integer
data type support are optional.

• Large primitive data types: long,
double, float

• Characters and strings

• Multidimensional arrays

• Dynamic class loading

• Security manager

• Garbage collection and finalization

• Threads

• Object serialization

• Object cloning

off-card VM on-card VM

interpreterconverter

CAP
file

class
files

Figure 3.1 Java Card virtual machine

chapter 3.fm Page 31 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW

32

together, they implement all the virtual machine functions—loading Java class files
and executing them with a particular set of semantics. The converter loads and pre-
processes the class files that make up a Java package and outputs a CAP (converted
applet) file. The CAP file is then loaded on a Java smart card and executed by the
interpreter. In addition to creating a CAP file, the converter generates an export file
representing the public APIs of the package being converted.

Java Card technology supports only a subset of the Java language. Corre-
spondingly, the Java Card virtual machine supports only the features that are
required by the language subset. Any unsupported language features used in an
applet are detected by the converter.

3.3.1 CAP File and Export File

Java Card technology introduces two new binary file formats that enable platform-
independent development, distribution, and execution of Java Card software. A CAP
file contains an executable binary representation of the classes in a Java package.
The JAR file format is used as the container format for CAP files. A CAP file is a
JAR file that contains a set of components, each stored as an individual file in the
JAR file. Each component describes an aspect of the CAP file contents, such as class
information, executable bytecodes, linking information, verification information,
and so forth. The CAP file format is optimized for a small footprint by using com-
pact data structures and limited indirection. It defines a bytecode instruction set that
is based on and optimized from the Java bytecode instruction set.

The “write once, run anywhere” quality of Java programs is perhaps the most
significant feature of the Java platform. In Java technology, the class file is the
central piece of the Java architecture. It defines the standard for the binary com-
patibility of the Java platform. Because of the distributed characteristic of the Java
Card system architecture, the CAP file sets the standard file format for binary
compatibility on the Java Card platform. The CAP file format is the form in which
software is loaded onto Java smart cards. For example, CAP files enable dynamic
loading of applet classes after the card has been made. That is how it gets the
name converted applet (CAP) file.

Export files are not loaded onto smart cards and thus are not directly used by
the interpreter. Rather, they are produced and consumed by the converter for veri-
fication and linking purposes. Export files can be thought of as the header files in
the C programming language. An export file contains public API information for
an entire package of classes. It defines the access scope and name of a class and

chapter 3.fm Page 32 Monday, May 8, 2000 12:44 PM

 JAVA CARD VIRTUAL MACHINE

33

the access scope and signatures of the methods and fields of the class. An export
file also contains linking information used for resolving interpackage references
on the card.

The export file does not contain any implementation; that is, it does not con-
tain bytecodes. So an export file can be freely distributed by an applet developer
to the potential users of the applet without revealing the internal implementation
details.

3.3.2 Java Card Converter

Unlike the Java virtual machine, which processes one class at a time, the conversion
unit of the converter is a package. Class files are produced by a Java compiler from
source code. Then, the converter preprocesses all the class files that make up a Java
package and converts the package to a CAP file.

During the conversion, the converter performs tasks that a Java virtual
machine in a desktop environment would perform at class-loading time:

• Verifies that the load images of the Java classes are well formed

• Checks for Java Card language subset violations

• Performs static variables initialization

• Resolves symbolic references to classes, methods, and fields into a more com-
pact form that can be handled more efficiently on the card

• Optimizes bytecode by taking advantage of information obtained at class-
loading and linking time

• Allocates storage and creates virtual machine data structures to represent
classes

The converter takes as input not only the class files to be converted but also
one or more

export files. Besides producing a CAP file, the converter generates an
export file for the converted package. Figure 3.2 demonstrates how a package is
converted. The converter loads all the classes in a Java package. If the package
imports classes from other packages, the converter also loads the export files of
those packages. The outputs of the converter are a CAP file and an export file for
the package being converted.

chapter 3.fm Page 33 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW

34

3.3.3 Java Card Interpreter

The Java Card interpreter provides runtime support of the Java language model and
thus allows hardware independence of applet code. The interpreter performs the fol-
lowing tasks:

• Executes bytecode instructions and ultimately executes applets

• Controls memory allocation and object creation

• Plays a crucial role in ensuring runtime security

So far, the Java Card virtual machine has been described as comprising the
converter and the interpreter. Informally, however, the Java Card virtual machine
is defined as the on-card piece of the virtual machine—the interpreter, in our cur-
rent definition. This convention has been applied in many early Java Card publica-
tions. Hence, for the remainder of this book, the terms Java Card interpreter and
Java Card virtual machine are used synonymously unless otherwise stated. But
readers should be aware that, when comparing the Java Card platform to the Java
platform, the functions of executing Java class files are accomplished by the con-
verter and the interpreter together.

3.4 Java Card Installer and Off-Card Installation Program

The Java Card interpreter does not itself load CAP files. It only executes the code
found in the CAP file. In Java Card technology, the mechanisms to download and
install a CAP file are embodied in a unit called the installer.

Figure 3.2 Converting a package

class
files

CAP
file

converter

export
files

export
file

chapter 3.fm Page 34 Monday, May 8, 2000 12:44 PM

 JAVA CARD INSTALLER AND OFF-CARD INSTALLATION PROGRAM

35

The Java Card installer resides within the card. It cooperates with an off-card
installation program. The off-card installation program transmits the executable
binary in a CAP file to the installer running on the card via a card acceptance
device (CAD). The installer writes the binary into the smart card memory, links it
with the other classes that have already been placed on the card, and creates and
initializes any data structures that are used internally by the Java Card runtime
environment. The installer and the installation program and how they relate to the
rest of the Java Card platform are illustrated in Figure 3.3.

The division of functionality between the interpreter and the CAP file installer
keeps the interpreter small and provides flexibility for installer implementations.
More explanation of the installer is given in the coverage of the applet installation
later in this chapter

class
files

CAP
file

off-card installation
program

interpreter

on-card
installer

PC or workstation

smart card

CAD

runtime environmentconverter

Figure 3.3 Java Card installer and off-card installation program

chapter 3.fm Page 35 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW

36

3.5 Java Card Runtime Environment

The Java Card runtime environment (JCRE) consists of Java Card system compo-
nents that run inside a smart card. The JCRE is responsible for card resource man-
agement, network communications, applet execution, and on-card system and
applet security. Thus, it essentially serves as the smart card’s operating system.

As illustrated in Figure 3.4, the JCRE sits on top of the smart card hardware
and native system. The JCRE consists of the Java Card virtual machine (the byte-
code interpreter), the Java Card application framework classes (APIs), industry-
specific extensions, and the JCRE system classes. The JCRE nicely separates
applets from the proprietary technologies of smart card vendors and provides
standard system and API interfaces for applets. As a result, applets are easier to
write and are portable on various smart card architectures.

The bottom layer of the JCRE contains the Java Card virtual machine (JCVM)
and native methods. The JCVM executes bytecodes, controls memory allocation,
manages objects, and enforces the runtime security, as explained previously. The
native methods provide support to the JCVM and the next-layer system classes.
They are responsible for handling the low-level communication protocols, mem-
ory management, cryptographic support, and so forth.

Figure 3.4 On-card system architecture

native methods
Java Card virtual machine

(bytecode interpreter)

applet
management

transaction
management

I/O network
communication

other
services

system classes

smart card hardware and native system

framework
classes (APIs)

industry-specific
extensions

installer

JCRE

Applets loyalty
applet

wallet
applet

authentication
applet

chapter 3.fm Page 36 Monday, May 8, 2000 12:44 PM

 JAVA CARD RUNTIME ENVIRONMENT

37

The system classes act as the JCRE executive. They are analogues to an oper-
ating system core. The system classes are in charge of managing transactions,
managing communication between the host applications

1

 and Java Card applets,
and controlling applet creation, selection, and deselection. To complete tasks, the
system classes typically invoke native methods.

The Java Card application framework defines the application programming
interfaces. The framework consists of four core and extension API packages. The
API classes are compact and customized for developing smart card applets. The
major advantage of this framework is that it makes it relatively easy to create an
applet. The applet developers can concentrate most of their effort on the details of
the applets rather than on the details of the smart card system infrastructure.
Applets access the JCRE services through API classes.

A specific industry or business can supply add-on libraries to provide addi-
tional services or to refine the security and system model. For example, the Open
Platform extends the JCRE services to meet financial industries’ specific security
needs. Among many add-on features, it enforces issuers’ control of the cards and
specifies a standard set of commands for card personalization.

The installer enables the secure downloading of software and applets onto the
card after the card is made and issued to the card holder. The installer cooperates
with the off-card installation program. Together they accomplish the task of load-
ing the binary contents of CAP files. The installer is an optional JCRE component.
Without the installer, all card software, including applets, must be written into
card’s memory during the card manufacturing process.

Java Card applets are user applications on the Java Card platform. Applets are
of course written in the subset of the Java programming language and controlled
and managed by the JCRE. Applets are downloadable. Applets can be added to a
Java smart card after it has been manufactured.

3.5.1 JCRE Lifetime

In a PC or a workstation, the Java virtual machine runs as an operating system pro-
cess. Data and objects are created in RAM. When the OS process is terminated, the
Java applications and their objects are automatically destroyed.

In a Java smart card, the Java Card virtual machine runs within the Java Card
runtime environment. The JCRE is initialized at card initialization time. The
JCRE initialization is performed only once during the card lifetime. During this
process, the JCRE initializes the virtual machine and creates objects for providing

1

Host applications are the applications running at the terminal side with which applets communicate.

chapter 3.fm Page 37 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW

38

the JCRE services and managing applets. As applets are installed, the JCRE cre-
ates applet instances, and applets create objects to store data.

Most of the information on a card must be preserved even when power is
removed from the card. Persistent memory technology (such as EEPROM) is used
to achieve this preservation. Data and objects are created in persistent memory.
The lifetime of the JCRE is equivalent to the complete lifetime of the card. When
power is removed, the virtual machine is only suspended. The state of the JCRE
and the objects created on the card are preserved.

The next time the card is energized, the JCRE restarts virtual machine execu-
tion by loading data from persistent memory.

2

 A subtle notion here is that the
JCRE does not resume the virtual machine operation at the exact point where it
lost power. The virtual machine is reset and executes from the beginning of the
main loop. The JCRE reset differs from initialization, as it preserves applets and
objects created on the card. During the reset, if a transaction was not previously
completed, the JCRE performs any necessary cleanup to bring the JCRE into a
consistent state.

3.5.2 How Does the JCRE Operate during a CAD Session?

The period from the time the card is inserted into the card acceptance device (CAD)
and is powered up until the time the card is removed from the CAD is called a CAD
session. During a CAD session, the JCRE operates like a typical smart card—it sup-
ports APDU I/O communication with a host application (Figure 3.5). APDUs

2

The JCRE also returns the answer to reset (

ATR

) to the host, indicating the card communication
capabilities.

JCRE

Applet

CAD

Figure 3.5 APDU I/O communication

chapter 3.fm Page 38 Monday, May 8, 2000 12:44 PM

 JAVA CARD RUNTIME ENVIRONMENT

39

(application protocol data units) are data packets exchanged between applets and the
host application. Each APDU contains either a command from the host to the applet
or the response from the applet to the host

After a JCRE reset, the JCRE enters into a loop, waiting for APDU com-
mands from the host. The host sends APDU commands to the Java Card platform,
using the serial communication interface via the card input/output contact point.

When a command arrives, the JCRE either selects an applet to run as
instructed in the command or forwards the command to the currently selected
applet. The selected applet then takes control and processes the APDU command.
When finished, the applet sends a response to the host application and surrenders
control to the JCRE. This process repeats when the next command arrives. How
applets process APDUs is explained further in Chapters 7 and 8.

3.5.3 Java Card Runtime Features

Besides supporting the Java language runtime model, the JCRE supports three addi-
tional runtime features:

•

Persistent and transient objects

—By default, Java Card objects are persistent
and are created in persistent memory. The space and data of such objects span
CAD sessions. For security and performance reasons, applets can create ob-
jects in RAM. Such objects are called transient objects. Transients objects con-
tain temporary data that are not persistent across CAD sessions.

•

Atomic operations and transactions

—The Java Card virtual machine ensures
that each write operation to a single field in an object or in a class is atomic.
The updated field either gets the new value or is restored to the previous value.
In addition, the JCRE provides transaction APIs. An applet can include several
write operations in a transaction. Either all updates in a transaction are com-
plete, or (if a failure occurs in the middle of the transaction) none of them
proceeds.

•

Applet firewall and the sharing mechanisms

—The applet firewall isolates ap-
plets. Each applet runs within a designated space. The existence and operation
of one applet has no effect on the other applets on the card. The applet firewall
is enforced by the Java Card virtual machine as it executes bytecodes. In situ-
ations where applets need to share data or access JCRE services, the virtual
machine permits such functions through secure sharing mechanisms.

chapter 3.fm Page 39 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW

40

3.6 Java Card APIs

The Java Card APIs consist of a set of customized classes for programming smart
card applications according to the ISO 7816 model. The APIs contain three core
packages and one extension package. The three core packages are

java.lang

,

javacard.framework

, and

javacard.security

. The extension package is

java-

cardx.crypto

.
Developers who are familiar with the Java platform will notice that many Java

platform classes are not supported in the Java Card APIs. For example, the Java plat-
form classes for GUI interfaces, network I/O, and desktop file system I/O are not
supported. The reason is that smart cards do not have a display, and they use a dif-
ferent network protocol and file system structure. Also, many Java platform utility
classes are not supported, to meet the strict memory requirements.

The classes in the Java Card APIs are compact and succinct. They include
classes adapted from the Java platform for providing Java language support and
cryptographic services. They also contain classes created especially for supporting
the smart card ISO 7816 standard.

3.6.1

java.lang

 Package

The Java Card

java.lang

 package is a strict subset of its counterpart

java.lang

package on the Java platform. The supported classes are

Object

,

Throwable

, and
some virtual machine–related exception classes, as shown in Table 3.2. For the sup-
ported classes, many of the Java methods are not available. For example, the Java
Card

Object

 class defines only a default constructor and the

equals

 method.
The

java.lang

 package provides fundamental Java language support. The class

Object

 defines a root for the Java Card class hierarchy, and the class

Throwable

provides a common ancestor for all exceptions. The supported exception classes
ensure consistent semantics when an error occurs due to a Java language violation.
For example, both the Java virtual machine and the Java Card virtual machine throw
a

NullPointerException

 when a null reference is accessed.

Table 3.2

Java Card

java.lang

 package

Object Throwable Exception

RuntimeException ArithmeticException ArrayIndexOutOfBoundsException

ArrayStoreException ClassCastException IndexOutOfBoundsException

NullPointerException SecurityException NegativeArraySizeException

chapter 3.fm Page 40 Monday, May 8, 2000 12:44 PM

 JAVA CARD APIS

41

3.6.2

javacard.framework

 Package

The

javacard.framework

 is an essential package. It provides framework classes
and interfaces for the core functionality of a Java Card applet. Most important, it
defines a base

Applet

 class, which provides a framework for applet execution and
interaction with the JCRE during the applet lifetime. Its role with respect to the
JCRE is similar to that of the Java

Applet

 class to a hosting browser. A user applet
class must extend from the base

Applet

 class and override methods in the

Applet

class to implement the applet's functionality.
Another important class in the

javacard.framework

 package is the

APDU

 class.
APDUs are carried by the transmission protocol. The two standardized transmis-
sion protocols are T=0 and T=1. The

APDU

 class is designed to be transmission
protocol independent. In other words, it is carefully designed so that the intrica-
cies of and differences between the T=0 and T=1 protocols are hidden from applet
developers. Applet developers can handle APDU commands much more easily
using the methods provided in the

APDU class. Applets work correctly regardless of
the underlying transmission protocol the platform supports. How to use the APDU
class is explained in Chapter 8.

The Java platform class java.lang.System is not supported. The Java Card
platform supplies the class javacard.framework.JCSystem, which provides an
interface to system behavior. The JCSystem class includes a collection of methods to
control applet execution, resource management, transaction management, and inter-
applet object sharing on the Java Card platform.

Other classes supported in the javacard.framework package are PIN, util-
ity, and exceptions. PIN is short for personal identification number. It is the
most common form of password used in smart cards for authenticating card
holders

3.6.3 javacard.security Package

The javacard.security package provides a framework for the cryptographic
functions supported on the Java Card platform. Its design is based on the
java.security package.

The javacard.security package defines a key factory class keyBuilder and
various interfaces that represent cryptographic keys used in symmetric (DES) or
asymmetric (DSA and RSA) algorithms. In addition, it supports the abstract base
classes RandomData, Signature, and MessageDigest, which are used to generate
random data and to compute message digests and signatures.

chapter 3.fm Page 41 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW42

3.6.4 javacardx.crypto Package

The javacardx.crypto package is an extension package. It contains cryptographic
classes and interfaces that are subject to United States export regulatory require-
ments. The javacardx.crypto package defines the abstract base class Cipher for
supporting encryption and decryption functions.

The packages javacard.security and javacardx.crypto define API inter-
faces that applets call to request cryptographic services. However, they do not pro-
vide any implementation. A JCRE provider needs to supply classes that implement
key interfaces and extend from the abstract classes RandomData, Signature, Mes-
sageDigest, and Cipher. Usually a separate coprocessor exists on smart cards to
perform cryptographic computations. Chapter 10 explains how to support crypto-
graphic functions in applets by using the classes in the javacard.security and
javacardx.crypto packages.

3.7 Java Card Applets

Java Card applets should not be confused with Java applets just because they are all
named applets. A Java Card applet is a Java program that adheres to a set of conven-
tions that allow it to run within the Java Card runtime environment. A Java Card
applet is not intended to run within a browser environment. The reason the name
applet was chosen for Java Card applications is that Java Card applets can be loaded
into the Java Card runtime environment after the card has been manufactured. That
is, unlike applications in many embedded systems, applets do not need to be burned
into the ROM during manufacture. Rather, they can be dynamically downloaded
onto the card at a later time.

An applet class must extend from the javacard.framework.Applet class. The
base Applet class is the superclass for all applets residing on a Java Card. The
applet class is a blueprint that defines the variables and methods of an applet. A
running applet on the card is an applet instance—an object of the applet class. As
with any persistent objects, once created, an applet lives on the card forever.

The Java Card runtime environment supports a multiapplication environment.
Multiple applets can coexist on a single Java smart card, and an applet can have
multiple instances. For example, one wallet applet instance can be created for sup-
porting the U.S. dollar, and another can be created for the British pound.

chapter 3.fm Page 42 Monday, May 8, 2000 12:44 PM

 PACKAGE AND APPLET NAMING CONVENTION 43

3.8 Package and Applet Naming Convention

Packages and programs that you are familiar with in the Java platform are uniquely
identified using Unicode strings and a naming scheme based on Internet domain
names. In the Java Card platform, however, each applet instance is uniquely identi-
fied and selected by an application identifier (AID). Also, each Java package is
assigned an AID. When loaded on a card, a package is then linked with other pack-
ages on the card via their AIDs.

ISO 7816 specifies AIDs to be used for unique identification of card applica-
tions and certain kinds of files in card file systems. An AID is an array of bytes
that can be interpreted as two distinct pieces, as shown in Figure 3.6. The first
piece is a 5-byte value known as a RID (resource identifier). The second piece is a
variable-length value known as a PIX (proprietary identifier extension). A PIX can
be from 0 to 11 bytes in length. Thus an AID can range from 5 to 16 bytes in total
length.

ISO controls the assignment of RIDs to companies; each company has a
unique RID. Companies manage assignment of PIXs in AIDs. This section pro-
vides the brief description of AIDs. For complete details, refer to ISO 7816-5,
AID Registration Category D format.

In the Java Card platform, the AID for a package is constructed by concate-
nating the company’s RID and a PIX for that package. An applet AID is con-
structed similarly to a package AID. It is a concatenation of the applet provider’s
RID and the PIX for that applet. An applet AID must not have the same value as
the AID of any package or the AID of any other applet. However, since the RID in
an AID identifies an applet provider, the package AID and the AID(s) of applet(s)
defined in the package must share the same RID.

The package AID and the default applet AID for each applet defined in the
package are specified in the CAP file. They are supplied to the converter when the
CAP file is generated.

Figure 3.6 Application identifier (AID)

RID (5 bytes) PIX (0–11 bytes)

chapter 3.fm Page 43 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW44

3.9 Applet Development Process

Development of a Java Card applet begins as with any other Java program: a
developer writes one or more Java classes and compiles the source code with a
Java compiler, producing one or more class files. Figure 3.7 demonstrates the
applet development process.

Next, the applet is run, tested, and debugged in a simulation environment. The
simulator simulates the Java Card runtime environment on a PC or a workstation.
In the simulation environment, the applet runs on a Java virtual machine, and thus
the class files of the applet are executed. In this way the simulator can utilize

Figure 3.7 Applet development process

Java
files

class
files

Java
compiler

Java Card
simulator

Step 1:

Step 2:

Java Card
converter

export
files

CAP
file(s)

export
file(s)Step 3:

Java Card
emulator

Step 4:

chapter 3.fm Page 44 Monday, May 8, 2000 12:44 PM

 APPLET INSTALLATION 45

many Java development tools (the virtual machine, debugger, and other tools) and
allow the developer to test the applet’s behavior and quickly see the applet’s
results without going through the conversion process. During this step, the overall
functional aspects of the applet are tested. However, some of the Java Card virtual
machine runtime features, such as the applet firewall and the transient and persis-
tent behavior of objects, cannot be examined.

Then the class files of the applet that make up a Java package are converted to
a CAP file by using the Java Card converter. The Java Card converter takes as
input not only the class files to be converted but also one or more export files.
When the applet package is converted, the converter can also produce an export
file for that package. A CAP file or an export file represents one Java package. If
an applet comprises several packages, a CAP file and an export file are created for
each package.

In the next step, the CAP file(s) that represent the applet are loaded and tested
in an emulation environment. The emulator also simulates the Java Card runtime
environment on a PC or a workstation. However, the emulator is a more sophisti-
cated testing tool. It encompasses a Java Card virtual machine implementation.
The behavior of the applet executing in the emulator should be the same as its
behavior running in a real card. In this development phase, not only is the applet
further tested, but also the runtime behavior of the applet is measured.

Most Java Card simulators and emulators come with a debugger. The debug-
ger allows the developer to set breakpoints or single-step the program, watching
the execution state of the applet change in the simulated or emulated Java Card
runtime environment.

Finally, when the applet is tested and ready to be downloaded into a real card,
the applet, represented by one or several CAP files, is loaded and installed in the
Java smart card.

3.10 Applet Installation

When a Java smart card is manufactured, the smart card proprietary system and the
Java Card runtime environment—including native methods, the Java Card virtual
machine, API classes, and libraries—are burned into ROM. This process of writing
the permanent components into the nonmutable memory of a chip is called masking.
The technology for performing masking is a proprietary technology of a smart card
vendor and is not discussed further in this book.

chapter 3.fm Page 45 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW46

3.10.1 ROM Applets

Java Card applet classes can be masked in ROM together with the JCRE and other
system components during the process of card manufacturing. Applet instances are
instantiated in EEPROM by the JCRE during JCRE initialization or at a later stage.
Such applets are called ROM applets.

The ROM applets are default applets that come with the card and are provided by
card issuers. Because ROM applet contents are controlled by issuers, Java Card tech-
nology allows ROM applets to declare native methods whose implementations are
written in another programming language, such as C or assembly code. Native meth-
ods are not subject to security checks enforced by the Java Card virtual machine.

3.10.2 Preissuance or Postissuance Applets

Alternatively, Java Card applet classes and associated class libraries can be down-
loaded and written into the mutable memory (such as EEPROM) of a Java smart
card after the card is manufactured. Such applets can be further categorized as
preissuance or postissuance applets. The terms preissuance and postissuance
derive from the fact that applets are downloaded before or after the card has been
issued. Preissuance applets are treated the same way as the ROM applets; both are
controlled by the issuer.

Unlike ROM applets or preissuance applets, postissuance applets are not
allowed to declare native methods. The reason is that the JCRE has no way to con-
trol the applet contents. Allowing downloaded applets to contain native code
could compromise Java Card security.

The following subsections focus on postissuance applet installation. Usually
preissuance applets are loaded using the same mechanism as postissuance applets,
but Java Card technology leaves the decision to the card issuers.

3.10.3 Postissuance Applet Installation

Applet installation refers to the process of loading applet classes in a CAP file, com-
bining them with the execution state of the Java Card runtime environment, and cre-
ating an applet instance to bring the applet into a selectable and execution state.

On the Java Card platform, the loading and installable unit is a CAP file. A CAP
file consists of classes that make up a Java package. A minimal applet is a Java pack-
age with a single class derived from the class javacard.framework.Applet. A more
complex applet with a number of classes can be organized into one Java package
or a set of Java packages.

chapter 3.fm Page 46 Monday, May 8, 2000 12:44 PM

 APPLET INSTALLATION 47

To load an applet, the off-card installer takes the CAP file and transforms it into
a sequence of APDU commands, which carry the CAP file content. By exchanging
the APDU commands with the off-card installation program, the on-card installer
writes the CAP file content into the card’s persistent memory and links the classes in
the CAP file with other classes that reside on the card. The installer also creates and
initializes any data that are used internally by the JCRE to support the applet. If the
applet requires several packages to run, each CAP file is loaded on the card.

As the last step during applet installation, the installer creates an applet
instance and registers the instance with the JCRE.3 To do so, the installer invokes
the install method:

public static void install(byte[] bArray, short offset, byte length)

The install method is an applet entry point method, similar to the main method in
a Java application. An applet must implement the install method. In the install
method, it calls the applet’s constructor to create and initialize an applet instance.
The parameter bArray of the install method supplies installation parameters for
applet initialization. The installation parameters are sent to the card along with the
CAP file. The applet developer defines the format and content of the installation
parameters.

After the applet is initialized and registered with the JCRE, it can be selected
and run. The JCRE identifies a running applet (an applet instance), using an AID.
The applet can register itself with the JCRE by using the default AID found in the
CAP file, or it can choose a different one. The installation parameters can be used
to supply an alternative AID.

The install method can be called more than once to create multiple applet
instances. Each applet instance is identified by a unique AID.

In the Java Card environment, an applet can be written and executed without
knowing how its classes are loaded. An applet’s sole responsibility during installa-
tion is to implement the install method.

3.10.4 Error Recovery during Applet Installation

The installation process is transactional. In case of an error, such as programmatic
failure, running out of memory, card tear, or other errors, the installer discards the

3 In a JCRE implementation, the operation for creating an applet instance can be performed at a later
stage after applet installation.

chapter 3.fm Page 47 Monday, May 8, 2000 12:44 PM

CHAPTER 3 JAVA CARD TECHNOLOGY OVERVIEW48

CAP file and any applets it had created during installation and recovers the space
and the previous state of the JCRE.

3.10.5 Installation Constraints

Readers should be aware that applet installation is different from dynamic class
loading at runtime, which is supported on a Java virtual machine on the desktop
environment. Java Card applet installation simply means to download classes
through an installation process after the card has been made.

Therefore, Java Card applet installation has two finer points. First, applets
executing on the card may refer only to classes that already exist on the card, since
there is no way to download classes during the normal execution of applet code.

Second, the order of loading must guarantee that each newly loaded package
references only packages that are already on the card. For example, to install an
applet, the javacard.framework package must be present in the card, because all
applet classes must extend from the class javacard.framework.Applet. An instal-
lation would fail if there were circularity such that package A and package B ref-
erence each other.

chapter 3.fm Page 48 Monday, May 8, 2000 12:44 PM

